A Fault Tolerance Improved Majority Voter for TMR System Architectures
نویسندگان
چکیده
For digital system designs, triple modular redundancy (TMR), which is a 3-tuple version of N-modular redundancy is widely preferred for many mission-control and safety-critical applications. The TMR scheme involves two-times duplication of the simplex system hardware, with a majority voter ensuring correctness provided at least two out of three copies of the system remain operational. Thus the majority voter plays a pivotal role in ensuring the correct operation of the system. The fundamental assumption implicit in the TMR scheme is that the majority voter does not become faulty, which may not hold well for implementations based on latest technology nodes with dimensions of the order of just tens of nanometers. To overcome the drawbacks of the classical majority voter some new voter designs were put forward in the literature with the aim of enhancing the fault tolerance. However, these voter designs generally ensure the correct system operation in the presence of either a faulty function module or the faulty voter, considered only in isolation. Since multiple faults may no longer be excluded in the nanoelectronics regime, simultaneous fault occurrences on both the function module and the voter should be considered, and the fault tolerance of the voters have to be analyzed under such a scenario. In this context, this article proposes a new fault-tolerant majority voter which is found to be more robust to faults than the existing voters in the presence of faults occurring internally and/or externally to the voter. Moreover, the proposed voter features less power dissipation, delay, and area metrics based on the simulation results obtained by using a 32/28nm CMOS process. Key-Words: Digital design, Fault modelling, Fault tolerance, TMR, Majority voter, CMOS, Standard cells
منابع مشابه
Power, Delay and Area Comparisons of Majority Voters relevant to TMR Architectures
N-modular redundancy (NMR) is commonly used to enhance the fault tolerance of a circuit/system, when subject to a fault-inducing environment such as in space or military systems, where upsets due to radiation phenomena, temperature and/or other environmental conditions are anticipated. Triple Modular Redundancy (TMR), which is a 3-tuple version of NMR, is widely preferred for mission-control sp...
متن کاملA Standard Cell Based Voter for use in TMR Implementation
For digital circuit/system architectures, the triple modular redundancy (TMR) scheme is widely used to cope with circuit/system faults. The TMR scheme involves duplication of a circuit/system twice and the majority voter, based on Boolean majority logic, ensures that the architecture remains functional even if any copy of circuit/system may become faulty at any time. However, the fundamental as...
متن کاملA Fault Tolerant Voter Circuit for Triple Modular Redundant System
Defect rate in Nanoelectronics is much higher than conventional CMOS circuits. Hardware redundancy can be a suitable solution for fault tolerance in nano level. A voter circuit is a part of a redundancy based fault tolerant system that enables a system to continue operating properly in the event of one or more faults within its components. Robustness of the voter circuit defines the reliability...
متن کاملA Novel Fuzzy Membership Partitioning for Improved Voting in Fault Tolerant System
This paper presents a novel technique for improved voting by adaptively varying the membership boundaries of a fuzzy voter to achieve realistic consensus among inputs of redundant modules of a fault tolerant system. We demonstrate that suggested dynamic membership partitioning minimizes the number of occurrences of incorrect outputs of a voter as compared to the fixed membership partitioning vo...
متن کاملA mid-value select voter
Hardware redundancy may be used in a variety of manners to achieve fault tolerance. One of the most popular techniques is a triple modular redundancy (TMR) scheme. Such a scheme has also been referred to as masking redundancy because failures those affect only if one of the three modules is masked by the majority of the nonfailed modules. Most of the published works on TMR make one crucial assu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1605.03771 شماره
صفحات -
تاریخ انتشار 2016